

Weave Impossible to Possible

BOEDON Industech Limited

# We supply a wide range of metal, ceramic and plastic structured packing to meet your various industrial separation and distillation demands. 

Structured packing is a kind of a geometrically shaped and corrugated packing. Differing from random packing, structured packing is neatly piled in the tower. A series corrugated layers make up each packing element, so that gas/liquid is spread and distributed radially from layer to layer within the element and creates a large contact area between the gas/liquid and the packing. Structured packing features large surface area, low pressure drop, uniform fluids, high efficient thermal and mass transfer, etc. It is widely used for the rectification, absorption and extraction in various fields.

According to the corrugated angle, it is divided into $X$ type and $Y$ type. $X$ type stands for the $30^{\circ}$ angle and the $Y$ type stands for the $45^{\circ}$ angle. $X$ type structured packing has low pressure drop and $Y$ type structured packing has better mass transfer property.


## sTRUCTURED PACKING

## Metal Structured Packing

It can be made of various metal materials, such as low carbon steel, stainless steel, duplex stainless steel, Monel, Titanium alloy and others. The stainless steel structured packing is the most widely used due to its excellent corrosion and rust resistance and durable properties. Metal structured packing has different packing types, which can be divided into grid structured packing, woven structured packing, perforated structured packing and protruded structured packing.

Metal gird structured packing
Features smooth surface and large contact area.

Metal woven structured packing
Is used for distillation of thermosenstive products


Metal perforated structured packing
Is used for rectification and absorption applications


Metal protruded structured packing
Improves its lubricating property and ensures efficient filtration.


STRUCTURED PACKING

## Ceramic Structured Packing



It consists of many similar geometric design packing units. The geometric design is a series of corrugated sheets, which are placed in parallel.
Ceramic structured packing has high filtering and separating efficiency to suit the complex applications. It also has low pressure drop, increased operating elasticity, and maximum liquid treatment. Ceramic structured packing can be made into round or rectangular shapes to suit different applications. It can be made into various independent units to facilitate the transportation and assembly of structured packing with large diameters.

## STRUCTURED PACKING

## Plastic Structured Packing

It is generally plastic perforated structured packing. The perforated structured packing is made of PP and PE materials and the plate packing is made of PP or PVDF materials. Openings can be added onto the plate to improve the mass transfer efficiency. Plastic wire gauze packing made of PP or PE materials are also available. Similar to the ceramic structure packing and metal structured packing, the plastic structured packing can also be made into round or rectangular shapes. Special shapes can be customized.


## STRUCTURED PACKING

## Specification

Material

metal (stainless steel, low carbon steel, duplex stainless steel, Monel, Titanium alloy, etc.), plastic, ceramic

Arrangement - $X$ type $\left(30^{\circ}\right)$ and $Y$ type $\left(45^{\circ}\right)$ corrugated angle geometrical shape.

## sTRUCTURED PACKING

## Metal Grid



| Model | Mould | Surface Area | Height (mm) | Surface Structure | Material Thickness |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | $\mathrm{m}^{2} / \mathrm{m}^{3}$ | mm | - | mm |
| BD-M-GSP-90X | 90 X | 90 | 140 | Smooth | $0.5-2$ |
| BD-M-GSP-64X | $64 X$ | 64 | 220 | Smooth | $0.5-2$ |
| BD-M-GSP-64Y | $64 Y$ | 64 | 130 | Smooth | $0.5-2$ |
| BD-M-GSP-40Y | $40 Y$ | 40 | 200 | Smooth | $0.5-2$ |

## Metal Woven



| Model | Mould | Surface Area | Bulk Density | Voidage | Pressure Drop | Theoretical Plate Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | $\mathrm{m}^{2} / \mathrm{m}^{3}$ | $\mathrm{~kg} / \mathrm{m}^{3}$ | $\%$ | $\mathrm{~Pa} / \mathrm{m}^{3}$ | $\mathrm{~m}^{-1}$ |
| BD-M-MSP-250X | $250 X$ | 250 | 125 | 95 | $100-400$ | $2.5-3$ |
| BD-M-MSP-500X | $500 X$ | 500 | 250 | 90 | 400 | $4-5$ |
| BD-M-MSP-700Y | $700 Y$ | 700 | 280 | 85 | $600-700$ | $8-10$ |

STRUCTURED PACKING

## Metal Perforated



| Model |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Mould |  |
| - | Surface Area | Bulk Density |
| $\mathrm{m}^{2} / \mathrm{m}^{3}$ | Voidage | Pressure Drop |
| $\mathrm{kg} / \mathrm{m}^{3}$ | $\%$ | Theoretical Plate Number |
| $\mathrm{Pa} / \mathrm{m}^{3}$ |  |  |

## Ceramic Structured Packing



| Model | Mould - | Voidage \% | Plate Thickness mm | Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$ | Peak Height mm | Corrugation Distance \% | $\begin{gathered} \text { F Factor } \\ \mathrm{m} / \mathrm{s} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right)^{0.5} \end{gathered}$ | Theoretical Plate Number $\mathrm{m}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BD-C-SP-125Y | $125 Y$ | 85 | $2.5 \pm 0.5$ | 490 | 23 | 42 | 3 | 1-1.5 |
| BD-C-SP-150Y | 150Y | 84 | $2.2 \pm 0.2$ | 520 | 17 | 30 | 2.8 | 1.5-2 |
| BD-C-SP-250Y | 250Y | 82 | $1.4 \pm 0.2$ | 580 | 13 | 22 | 2.5 | 2-3 |
| BD-C-SP-350Y | 350Y | 80 | $1.2 \pm 0.2$ | 590 | 9 | 15 | 2 | 3.5-4 |
| BD-C-SP-450Y | 450Y | 76 | $1 \pm 0.2$ | 630 | 6.5 | 11 | 1.5-2 | 4-5 |
| BD-C-SP-500Y | 500Y | 72 | $0.8 \pm 0.2$ | 650 | 6 | 10-10.5 | 9-12 | 5-6 |
| BD-C-SP-550Y(X) | $550 Y(X)$ | 74 | $0.8 \pm 0.2$ | 680 | 5 | 10 | 1-1.3 | 5-6 |
| BD-C-SP-700Y(X) | $700 Y(X)$ | 72 | $0.8 \pm 0.2$ | 700 | 4.5 | 8 | 1.2-1.4 | 6-7 |

## Plastic Structured Packing



| Model - | Mould | Voidage \% | Plate Thickness mm | Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$ | Peak <br> Height mm | Corrugation Distance \% | $\begin{gathered} \text { F Factor } \\ \mathrm{m} / \mathrm{s} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right)^{0.5} \end{gathered}$ | Theoretical Plate Number $\mathrm{m}^{-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BD-P-SP-125Y | 125Y | 125 | 98.5 | 37.5 | 200 | 0.2-100 | 3 | 1.0-2.0 |
| BD-P-SP-125X | 125X | 125 | 98.5 | 37.5 | 140 | 0.2-100 | 3.5 | 0.8-0.9 |
| BD-P-SP-250Y | 250Y | 250 | 97 | 75 | 300 | 0.2-100 | 2.6 | 2.0-2.5 |
| BD-P-SP-250X | 250X | 250 | 97 | 75 | 180 | 0.2-100 | 2.8 | 1.5-2.0 |
| BD-P-SP-350Y | 350Y | 350 | 95 | 105 | 200 | 0.2-100 | 2 | 3.5-4.0 |
| BD-P-SP-350X | 350X | 350 | 95 | 105 | 130 | 0.2-100 | 2.2 | 2.3-2.8 |
| BD-P-SP-550Y | 550Y | 550 | 93 | 150 | 300 | 0.2-100 | 1.8 | 4.0-4.5 |
| BD-P-SP-500X | 500X | 500 | 93 | 150 | 180 | 0.2-100 | 2 | 2.8-3.2 |

STRUCTURED PACKING

## Features \& Application

Features

- Low pressure drop
- Large contact area
- High separation and filtering efficiency
- High capacity
- Reduced liquid hold-up performance
- Corrosion and high temperature resistance


## Application



Chemical

- Degasification
- Extraction
- Degasification, etc.


## Oil \& Gas

- Dehydration
- Separation
- Absorption, etc.


## Pharmaceutical

- Dehydration
- Extraction, etc.


## Weave Impossible <br> to Possible

