

Demisters

\& Tower Packings

Weave Impossible to Possible

DEMISTER \& TOWER PACKING

02.

Packed towers are used increasingly in a variety of applications in the chemical process industries, such as scrubbing, distillation and precipitation.

During packed tower, if the tower packing malfunctions, the mass transfer efficiency is greatly reduced and cause limitless problems and the entire process will suffer consequences that can be costly as well as lead to fines and shutdown.

Besides, if the filtration and separation is weak, there will be lots of pollutes discharges entraining valuable elements.

How Boedon Solve?

Boedon offers demisters and tower packings for distillation, scrubbers and other packed towers to increase surface areas, minimize pressure drops and improve mass transfer efficiency. No matter you want to build a new unit or replace your existing packing towers, our specialist will select the appropriate tower packing products for each application to ensure efficiency, performance and service life.

Products We Supply

Demister Pads

Install at the top of packed towers to capture micron sized mists and dry the vapor. It help to to reduce air pollution, save valuable materials and increase quality of processed liquids.

Random Packings
Fills the column with random structures, which uneven distribution and orientation of the random packings increase the surface area and enhances the transfer of mass between two fluids

Structured Packings

Honeycombed structures force fluids to take complicated paths down the length of the column to create a large surface area for contact between the liquid and the packing material without impeding gas flow.

Demister Pads

We can supply full ranges of demister pads for liquid and gas separation. We can supply drawings and installation guide for your projects.

Demister pads, also called demister, mister eliminator, vapor pad, is installed at the top of packed tower to be used for removing micron-sized liquid particles from a vapor stream. It is made of knitted wire mesh, which is woven interlocked to increase contact surface and improve separating efficiency. Stainless steel, copper, Monel and other alloy as well as polypropylene and other non-metallic materials make demister pad be used in more corrosive and high temperature applications. Generally, the demister pad is commonly used with structured packing and random packing

Demister pads can help to improve the operating condition, optimize process indicators, increase the amount of processing and recovery of valuable materials, protect the environment, and decrease air pollution.

DEMISTER PADS

Working Principles

The demister (demister pads) are installed at the top of packed tower. When the vapors carrying liquid entrainment rises at a constant speed and passes through the demister surface (interlocking knitted wire mesh), the vapor can easily passing through the demister while the rising liquid entrainment will collide with the mesh filament due to the inertia effect and are captured by the woven interlocked structure. Then the liquid will grow bigger and fall free when the droplets gravity exceeding vapor rising force and liquid surface tension force. As a result, the clean vapor passes through the demister and discharge out of the packed tower.

BOEDON

DEMISTER PADS

Materials

Material Products Separated

SS304	For nitric acid, water steam
SS304L	For petroleum Fractions
SS316	For fatty acids, reduced crude
SS316L	Reduced crude containing acid \& other corrosive
Copper	Alcohol, Aldehyde, Amines
Monel	For caustic soda \& other alkali, dilute acid
Nickel	For caustic soda, food product
Alloy 20	Nitric acid, alkaline PH
Teflon FEP	For Highly corrosive conditions
Hostaflon PTFE	For Highly corrosive conditions
Inconel 825	For dilute acid media \& alkaline solution
Inconel 625	For phosphoric and fatty acid
Polypropylene	For hydrilic acid, corrosive service at moderate temperature
P.V.D.F.	Corrosive Service for Temperature 140 ${ }^{\circ} \mathrm{C}$
P.T.F.E. / FEP / PFA /	For highly corrosive and high temperature
ETFE / ECTFE	
Hostaflon	Sulphuric acid plant, temperature up to 150 ${ }^{\circ} \mathrm{C}$
Glass Wool	For very fine mists

Stainless steel demister pad

PP demister pad

Technical Data of Demister Pads

Item	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{aligned}$	$\begin{gathered} \text { Free volume } \\ (\%) \end{gathered}$	$\begin{aligned} & \text { Surface area } \\ & \left(\mathrm{m}^{2} / \mathrm{m}^{3}\right) \end{aligned}$	Application
BDP-80	80	99.0	158	Moderate fouling, minimum press drop, dirty service
BDP-144	144	98.2	280	Heavy duty, e.g. oil \& gas separators
BDP-128	128	98.4	460	Light fouling, high velocity, dirty service
BDP-193	193	97.5	375	General purpose, optimum efficiency \& pressure drop, heavy duty
BDP-220	220	97.2	905	General purpose, optimum efficiency \& pressure drop, high corrosive condition

Features \& Application

Features

- Large surface area and high separating and removal efficiency.
- less maintenance and service required.
- Adapt to any corrosive and temperature conditions.
- Control emissions discharge and reduce air pollution
- Eliminate or reduce equipment damage caused by corrosion
- Increase the amount of processing and recovery of valuable materials

Chemical Process Industry

- Absorbers
- Distillation and Rectification Columns
- Distillation Plants for Sea Water
- Gas Compression
- Strippers
- Steam Drums

Power Generation

- Desalination Plants for Sea Water
- Flue Gas Desulphurization (FGD)
- Steam Drums
-Compressors

Oil and Gas Production

- Amine Absorbers
- Separators
- Compressors
- Glycol dehydration
- Scrubbers

Refinery Operations

- Distillation
- Catalytic Cracking
- Alykylation
- Strippers
- Compressors
- Condensors

Random Packing

We offer random packing in different materials and structures to meet your various gas-liquid mass transfer demands.

Random packing can be made of metal, plastic or ceramic materials. It is an efficient tower packing widely used in distillation, absorption and fractionation links in chemical plants and refineries. Random packing is divided into Raschig rings, Pall rings, saddle rings, mini rings and customized rings by structure, featuring low pressure drop, high flow rate and high mass transfer performance. We can offer random packing to satisfy your separation demands and working environments.

Working Principles

Random packing is widely used in absorption towers, distillation towers, degasification towers and stripping towers, aiming to achieve gas-liquid mass transfer. The following is an example of the working principle of random packing in stripping towers.

Stripping is a process of recovering the solute absorbed from the fluid and separating liquid from solute. First, differing from the orderly distribution of structured packing, random packing is randomly distributed on the packed bed, strippant (gas) enters from the bottom and moves upward. Dirty water sprays downward from tray distributors. During the process, the solute molecules are transferred into gases through an endothermic process. Gases and liquids contact each other in a form of counter-flow in the tower. The irregular distribution of random packing increases the surface area and enhances the mass transfer between two fluids. The solute turns into gas and mixes with strippant. Droplets are removed through the mist eliminator at the top of the tower and flows out from the top of the tower. Clean liquid moves downward due to gravity and flows out at the bottom of the tower.

Specification

Material _ Metal (stainless steel, carbon steel or other alloy), plastic (PP, PE, PVDF, etc.), ceramic

Structure

Raschig ring, Pall ring, saddle ring, mini ring, etc.

RANDOM PACKING

Popular Types

Raschig ring
Metal/plastic/ceramic

Super mini ring
Metal/plastic/ceramic

Polyhedral hollow ball Plastic only

Pall ring
Metal/plastic/ceramic

Super Raschig ring
Metal only

Tri-Pack
Plastic only

Saddle ring
Metal/plastic/ceramic

VSP ring
Metal only

Pentagon ring
Plastic only

Cascade mini ring Metal/plastic/ceramic

Dixon ring
Metal only

Super saddle ring
Plastic/ceramic

Raschig Ring

Model	Size $(\mathbf{D} \times \mathbf{T} \times \mathbf{H})$ mm	Bulk Density	Bulk Quantity	Surface Area	Voidage (\%)
-	$\mathrm{kg} / \mathrm{m}^{3}$	$\left(\mathrm{pcs} / \mathrm{m}^{3}\right)$	$\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	$\%$	
BD-M-RR-01	$16 \times 0.5 \times 16$	660	2480000	350	90
BD-M-RR-02	$25 \times 0.8 \times 25$	610	55000	220	93
BD-M-RR-03	$50 \times 1.0 \times 50$	430	7000	110	95
BD-M-RR-04	$80 \times 1.0 \times 80$	400	1820	60	96
BD-P-RR-05	$25 \times 1.0 \times 25$	88	48500	210	90
BD-P-RR-06	$50 \times 1.5 \times 50$	65	6500	105	92
BD-C-RR-07	$6 \times 2 \times 6$	750	3110000	789	73
BD-C-RR-08	$10 \times 2 \times 10$	700	720000	460	70
BD-C-RR-09	$15 \times 2 \times 15$	700	250000	350	70
BD-C-RR-10	$25 \times 2.5 \times 25$	600	49000	235	78
BD-C-RR-11	$38 \times 4 \times 38$	550	1200	178	75
BD-C-RR-12	$50 \times 5 \times 50$	530	6800	136	81
BD-C-RR-13	$80 \times 8 \times 80$	650	1930	108	680
BD-C-RR-14	$100 \times 10 \times 10$	680	100	90	70
BD-C-RR-15	$150 \times 15 \times 150$	700	295	75	68

BOEDON

RANDOM PACKING

Saddle Ring

Model -	$\begin{gathered} \text { Size } \\ (\mathrm{D} \times \mathrm{T} \times \mathrm{H}) \\ \mathrm{mm} \end{gathered}$	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Bulk Quantity (pcs/m ${ }^{3}$)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage(\%) \%
BD-M-PR-01	$16 \times 0.3 \times 16$	360	201000	346	95.5
BD-M-PR-02	$25 \times 0.4 \times 25$	302	5100	212	96.2
BD-M-PR-03	$25 \times 0.5 \times 25$	400	54000	216	95
BD-M-PR-04	$25 \times 0.6 \times 25$	461	5400	219	94.2
BD-M-PR-05	$38 \times 0.4 \times 38$	262	15180	145	96.7
BD-M-PR-06	$38 \times 0.6 \times 38$	328	15000	146	95.9
BD-M-PR-07	$50 \times 0.5 \times 50$	194	6500	106	97.5
BD-M-PR-08	$50 \times 0.7 \times 50$	285	6500	108	96.4
BD-M-PR-09	$50 \times 0.9 \times 50$	365	6500	109	95.4
BD-M-PR-10	$76 \times 0.8 \times 76$	205	183	69	97.4
BD-M-PR-11	$90 \times 1.0 \times 90$	229	1160	62	97.1
BD-P-PR-12	$16 \times 1 \times 16$	141	230000	260	91
BD-P-PR-13	$25 \times 1.2 \times 25$	85	48300	213	91
BD-P-PR-14	$38 \times 1.4 \times 38$	82	15800	151	91
BD-P-PR-15	$50 \times 1.5 \times 50$	60	6300	100	92
BD-P-PR-16	$76 \times 2.6 \times 76$	62	1930	72	92
BD-C-PR-17	$38 \times 4 \times 38$	570	13400	150	75
BD-C-PR-18	$50 \times 5 \times 50$	550	6800	120	78
BD-C-PR-19	$80 \times 8 \times 80$	520	1950	75	80

Saddle Ring

Model	$\begin{gathered} \text { Size } \\ (\mathrm{D} \times \mathrm{T} \times \mathrm{H}) \\ \mathrm{mm} \end{gathered}$	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Bulk Quantity (pcs/m ${ }^{3}$)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage \%	Packing Factor m^{-1}
BD-M-SR-01	$16.5 \times 0.25 \times 10.6$	223	324110	275	97.2	300.2
BD-M-SR-02	$16.5 \times 0.3 \times 10.6$	263	324110	275	96.7	304.9
BD-M-SR-03	$25.9 \times 0.25 \times 12.6$	163	127180	415	94.8	489.2
BD-M-SR-04	$25.9 \times 0.3 \times 12.6$	192	127180	344	95.5	393.2
BD-M-SR-05	$25.9 \times 0.4 \times 12.6$	266	127180	199	96.6	221
BD-M-SR-06	$35.4 \times 0.25 \times 18.8$	124	51180	151	98.4	158.3
BD-M-SR-07	$35.4 \times 0.3 \times 18.8$	146	51180	151	98.1	159.7
BD-M-SR-08	$35.4 \times 0.4 \times 18.8$	203	51180	151	97.4	163.2
BD-M-SR-09	$48.5 \times 0.3 \times 28.6$	95	15550	97	98.8	101
BD-M-SR-10	$48.5 \times 0.4 \times 28.6$	132	15550	97	98.3	102.5
BD-M-SR-11	$48.5 \times 0.5 \times 28.6$	169	15550	97	97.9	103.9
BD-M-SR-12	$67 \times 0.4 \times 37$	113	9000	84	98.6	87.3
BD-M-SR-13	$67 \times 0.5 \times 37$	145	9000	84	98.2	88.4
BD-M-SR-14	$76.5 \times 0.4 \times 42.5$	83	4690	61	99	62.9
BD-M-SR-15	$76.5 \times 0.5 \times 42.5$	106	4690	61	98.7	63.5
BD-P-SR-16	$25 \times 1.2 \times 13$	102	97680	288	85	467
BD-P-SR-17	$38 \times 1.2 \times 19$	91	25200	264	95	309
BD-P-SR-18	$50 \times 1.5 \times 25$	75	9400	250	96	282
BD-P-SR-19	$76 \times 3 \times 38$	59	3700	200	97	220
BD-C-SR-20	$16 \times 2 \times 12$	710	382000	450	70	1311
BD-C-SR-21	$25 \times 3 \times 19$	610	84000	250	74	617
BD-C-SR-22	$38 \times 4 \times 30$	590	25000	164	75	389
BD-C-SR-23	$50 \times 5 \times 40$	560	9300	142	76	323
BD-C-SR-24	$76 \times 9 \times 57$	520	1800	91	78	194

BOEDON

RANDOM PACKING

Cascade Mini Ring

Model	Size $(\mathbf{D} \times \mathbf{T} \times \mathbf{H})$	Bulk Density	Bulk Quantity (Surface Area	Voidage	Packing Factor
BD-M-CMR-01	$25 \times 0.5 \times 12.5$	383	98120	221	95	257
BD-M-CMR-02	$38 \times 0.6 \times 19$	325	30040	153	96	173
BD-M-CMR-03	$50 \times 0.8 \times 25$	308	12340	109	96	123
BD-M-CMR-04	$76 \times 1.2 \times 38$	306	3540	72	96	81
BD-P-CMR-05	$25 \times 1.2 \times 13$	98	81500	228	90	313
BD-P-CMR-06	$38 \times 1.4 \times 19$	58	27200	133	93	176
BD-P-CMR-07	$50 \times 1.5 \times 25$	55	10740	114	94	143
BD-P-CMR-08	$76 \times 3 \times 38$	698	3420	90	93	112
BD-C-CMR-09	$25 \times 3 \times 15$	650	72000	210	73	540
BD-C-CMR-10	$38 \times 4 \times 23$	630	21600	153	74	378
BD-C-CMR-11	$50 \times 5 \times 30$	580	9100	102	76	232
BD-C-CMR-12	$76 \times 9 \times 46$	530	2500	75	78	158

Super Mini Ring

Model	Size $(\mathbf{D} \times \mathbf{T} \times \mathbf{H})$	Bulk Density -	Bulk Quantity	Surface Area	Voidage	Packing Factor
BD-M-SMR-01	$16 \times 0.5 \times 5.5$	604	630000	348	92	312
BD-M-SMR-02	$25 \times 0.6 \times 9$	506	160000	228	94	280
BD-M-SMR-03	$38 \times 0.7 \times 12.7$	390	48000	150	95	175
BD-M-SMR-04	$50 \times 0.8 \times 17$	275	21500	115	97	156
BD-P-SMR-05	$38 \times 1.2 \times 12$	70	46000	145	92	186
BD-P-SMR-06	$50 \times 1.5 \times 17$	67	21500	128	93	159
BD-P-SMR-07	$76 \times 2.5 \times 26$	58	6500	116	93	144
BD-C-SMR-08	$16 \times 1.5 \times 10$	750	300500	250	87	1150
BD-C-SMR-09	$25 \times 2.0 \times 16$	700	87040	180	85	800
BD-C-SMR-10	$30 \times 2.5 \times 18$	690	55000	170	85	850
BD-C-SMR-11	$38 \times 3.5 \times 23$	720	27600	140	85	905
BD-C-SMR-12	$50 \times 4.5 \times 30$	650	10100	110	84	880

BOEDON

RANDOM PACKING

Super Raschig Ring

Model	Size mm	$\begin{gathered} \text { Bulk Density } \\ 304 \\ \mathrm{~kg} / \mathrm{m}^{3} \end{gathered}$	Bulk Quantity (pcs/m ${ }^{3}$)	Surface Area ($\mathrm{m}^{2} / \mathrm{m}^{3}$)	Voidage \%	Packing Factor m^{-1}
BD-M-SRR-01	0.3	230	180000	315	97.1	343.9
BD-M-SRR-02	0.5	275	145000	250	96.5	278
BD-M-SRR-03	0.6	310	145000	215	96.1	393.2
BD-M-SRR-04	0.7	240	45500	180	97	242.2
BD-M-SRR-05	1	220	32000	150	97.2	163.3
BD-M-SRR-06	1.5	170	13100	120	97.8	128
BD-M-SRR-07	2	165	9500	100	97.9	106.5
BD-M-SRR-08	3	150	4300	80	98.1	84.7
BD-M-SRR-09	3.5	150	3600	67	98.1	71

Metal VSP Ring

Model -	Size $(D \times T \times H)$ mm	$\begin{gathered} \text { Bulk Density } \\ 304 \\ \mathrm{~kg} / \mathrm{m}^{3} \\ \hline \end{gathered}$	Bulk Quantity (pcs/m³)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage \%	Packing Factor m^{-1}
BD-M-VSPR-01	$25 \times 0.6 \times 25$	420	59200	250	93	310
BD-M-VSPR-02	$38 \times 0.6 \times 38$	396	14000	138	94.7	163
BD-M-VSPR-03	$50 \times 0.8 \times 50$	350	7000	121	95	144
BD-M-VSPR-04	$76 \times 1.0 \times 76$	280	1950	75	95	86

Dixon

Model	Specs	Mesh Size mesh	Tower Diameter mm	Theoretical Plate $\mathrm{pcs} / \mathrm{m}$	Bulk Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage	Pressure Drop
mm								

Plastic Polyhedral Hollow Ring

\(\left.\begin{array}{ccccccc}Model \& Size \& Bulk Density \& Bulk Quantity \& Surface Area \& Voidage \& Packing Factor

- \& \mathrm{mm} \& \mathrm{kg} / \mathrm{m}^{3} \& \left(\mathrm{pcs} / \mathrm{m}^{3}\right) \& \left(\mathrm{m}^{2} / \mathrm{m}^{3}\right) \& 460 \& \mathrm{~m}^{-1}\end{array}\right]\)| $\%$ |
| :---: |
| BD-P-PHB-01 |
| BD-P-PHB-02 |

BOEDON

RANDOM PACKING

Plastic Tri-Pack Ring

Model	Size mm	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Bulk Quantity (pcs/m ${ }^{3}$)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage \%	Packing Factor m^{-1}
BD-P-TPR-01	25	81	81200	85	90	28
BD-P-TPR-02	32	70	25000	70	92	25
BD-P-TPR-03	50	62	11500	48	93	16
BD-P-TPR-04	95	45	1800	38	95	12

RANDOM PACKING

Plastic Pentagon Ring

Model	Size (D×T×H)					
-	mm	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Bulk Quantity $\left(\mathrm{pcs} / \mathrm{m}^{3}\right)$	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage $\%$	Packing Factor m^{-1}
BD-P-PR-01	$38 \times 12 \times 1.2$	112	46000	246	95	260.3
BD-P-PR-02	$50 \times 17 \times 1.5$	107	21500	218	97	225.2
BD-P-PR-03	$76 \times 26 \times 2.5$	92	6500	198	96	207.1

RANDOM PACKING

Supper Saddle Ring

Model	Size $(\mathbf{D} \times \mathrm{T} \times \mathrm{H})$ mm	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Bulk Quantity ($\mathrm{pcs} / \mathrm{m}^{3}$)	Surface Area $\left(\mathrm{m}^{2} / \mathrm{m}^{3}\right)$	Voidage \%	Packing Factor m^{-1}
BD-P-SSR-01	$25 \times 1.2 \times 20$	56000	238	85	340	260.3
BD-P-SSR-02	$38 \times 1.2 \times 19$	25200	178	75	201	225.2
BD-P-SSR-03	$50 \times 1.5 \times 25$	9400	168	68	184	260.3
BD-P-SSR-04	$76 \times 3 \times 38$	3700	130	52	138	225.2
BD-C-SSR-05	$25 \times 3 \times 20$	76600	190	78	340	260.3
BD-C-SSR-06	$38 \times 4 \times 30$	24600	131	84	190	225.2
BD-C-SSR-07	$50 \times 6 \times 42$	7344	88.4	81	166	260.3
BD-C-SSR-08	$76 \times 9 \times 53$	1976	58.5	77	127	225.2

Features \& Application

Features

Application

Structured Packing

We supply a wide range of metal, ceramic and plastic structured packing to meet your various industrial separation and distillation demands.

Structured packing is a kind of a geometrically shaped and corrugated packing. Differing from random packing, structured packing is neatly piled in the tower. A series corrugated layers make up each packing element, so that gas/liquid is spread and distributed radially from layer to layer within the element and creates a large contact area between the gas/liquid and the packing. Structured packing features large surface area, low pressure drop, uniform fluids, high efficient thermal and mass transfer, etc. It is widely used for the rectification, absorption and extraction in various fields.

According to the corrugated angle, it is divided into X type and Y type. X type stands for the 30° angle and the Y type stands for the 45° angle. X type structured packing has low pressure drop and Y type structured packing has better mass transfer property.

BOEDON

Metal Structured Packing

It can be made of various metal materials, such as low carbon steel, stainless steel, duplex stainless steel, Monel, Titanium alloy and others. The stainless steel structured packing is the most widely used due to its excellent corrosion and rust resistance and durable properties. Metal structured packing has different packing types, which can be divided into grid structured packing, woven structured packing, perforated structured packing and protruded structured packing.

Metal gird structured packing
Features smooth surface and large contact area.

Metal perforated structured packing
Is used for rectification and absorption applications.

Metal woven structured packing
Is used for distillation of thermosenstive products

Metal protruded structured packing
Improves its lubricating property and ensures efficient filtration.

Ceramic Structured Packing

It consists of many similar geometric design packing units. The geometric design is a series of corrugated sheets, which are placed in parallel.
Ceramic structured packing has high filtering and separating efficiency to suit the complex applications. It also has low pressure drop, increased operating elasticity, and maximum liquid treatment. Ceramic structured packing can be made into round or rectangular shapes to suit different applications. It can be made into various independent units to facilitate the transportation and assembly of structured packing with large diameters.

STRUCTURED PACKING

Plastic Structured Packing

It is generally plastic perforated structured packing. The perforated structured packing is made of PP and PE materials and the plate packing is made of PP or PVDF materials. Openings can be added onto the plate to improve the mass transfer efficiency. Plastic wire gauze packing made of PP or PE materials are also available. Similar to the ceramic structure packing and metal structured packing, the plastic structured packing can also be made into round or rectangular shapes. Special shapes can be customized.

STRUCTURED PACKING

Specification

Material

metal (stainless steel, low carbon steel, duplex stainless steel, Monel, Titanium alloy, etc.), plastic, ceramic

Arrangement _ $\quad X$ type $\left(30^{\circ}\right)$ and Y type $\left(45^{\circ}\right)$ corrugated angle geometrical shape.

sTRUCTURED PACKING

Metal Grid

Model	Mould	Surface Area m^{2} / m^{3}	Height (mm) mm	Surface Structure Material Thickness	mm
BD-M-GSP-90X	$90 X$	90	140	Smooth	$0.5-2$
BD-M-GSP-64X	$64 X$	64	220	Smooth	$0.5-2$
BD-M-GSP-64Y	$64 Y$	64	130	Smooth	$0.5-2$
BD-M-GSP-40Y	$40 Y$	40	200	Smooth	$0.5-2$

Metal Woven

Model	Mould	Surface Area	Bulk Density			
-	-	$\mathrm{m}^{2} / \mathrm{m}^{3}$	$\mathrm{~kg} / \mathrm{m}^{3}$	Voidage	Pressure Drop	Theoretical Plate Number
BD-M-MSP-250X	$250 X$	250	125	95	$100-400$	$\mathrm{~m}^{-1}$
BD-M-MSP-500X	$500 X$	500	250	90	400	$2.5-3$
BD-M-MSP-700Y	$700 Y$	700	280	85	$600-700$	$4-5$

STRUCTURED PACKING

Metal Perforated

Model						
-	Mould					
-	Surface Area $\mathrm{m}^{2} / \mathrm{m}^{3}$	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Voidage $\%$	Pressure Drop $\mathrm{Pa} / \mathrm{m}^{3}$	Theoretical Plate Number	
BD-M-PSP-125Y	$125 Y$	125	100	98	200	$1-1.2$
BD-M-PSP-250Y	$250 Y$	250	200	97	300	$2-2.5$
BD-M-PSP-350Y	$350 Y$	350	280	94	350	$3.5-4$
BD-M-PSP-500Y	$500 Y$	500	360	92	400	$4-4.5$
BD-M-PSP-125X	$125 X$	125	100	98	140	$0.8-0.9$
BD-M-PSP-250X	$250 X$	250	200	97	180	$1.6-2$
BD-M-PSP-350X	$350 X$	350	280	94	230	$2.3-2.8$
BD-M-PSP-500X	$500 X$	500	360	92	280	$2.8-3.2$

Ceramic Structured Packing

Model	Mould	Voidage \%	Plate Thickness mm	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Peak Height mm	Corrugation Distance \%	$\begin{gathered} \text { F Factor } \\ \mathrm{m} / \mathrm{s} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right)^{0.5} \end{gathered}$	Theoretical Plate Number m^{-1}
BD-C-SP-125Y	125 Y	85	2.5 ± 0.5	490	23	42	3	1-1.5
BD-C-SP-150Y	150Y	84	2.2 ± 0.2	520	17	30	2.8	1.5-2
BD-C-SP-250Y	250Y	82	1.4 ± 0.2	580	13	22	2.5	2-3
BD-C-SP-350Y	350Y	80	1.2 ± 0.2	590	9	15	2	3.5-4
BD-C-SP-450Y	450Y	76	1 ± 0.2	630	6.5	11	1.5-2	4-5
BD-C-SP-500Y	500Y	72	0.8 ± 0.2	650	6	10-10.5	9-12	5-6
BD-C-SP-550Y(X)	550Y(X)	74	0.8 ± 0.2	680	5	10	1-1.3	5-6
BD-C-SP-700Y(X)	700Y(X)	72	0.8 ± 0.2	700	4.5	8	1.2-1.4	6-7

Plastic Structured Packing

Model -	Mould	Voidage \%	Plate Thickness mm	Bulk Density $\mathrm{kg} / \mathrm{m}^{3}$	Peak Height mm	Corrugation Distance \%	$\begin{gathered} \text { F Factor } \\ \mathrm{m} / \mathrm{s} \\ \left(\mathrm{~kg} / \mathrm{m}^{3}\right)^{0.5} \\ \hline \end{gathered}$	Theoretical Plate Number m^{-1}
BD-P-SP-125Y	125Y	125	98.5	37.5	200	0.2-100	3	1.0-2.0
BD-P-SP-125X	125X	125	98.5	37.5	140	0.2-100	3.5	0.8-0.9
BD-P-SP-250Y	250Y	250	97	75	300	0.2-100	2.6	2.0-2.5
BD-P-SP-250X	250X	250	97	75	180	0.2-100	2.8	1.5-2.0
BD-P-SP-350Y	350Y	350	95	105	200	0.2-100	2	3.5-4.0
BD-P-SP-350X	350X	350	95	105	130	0.2-100	2.2	2.3-2.8
BD-P-SP-550Y	550Y	550	93	150	300	0.2-100	1.8	4.0-4.5
BD-P-SP-500X	500X	500	93	150	180	0.2-100	2	2.8-3.2

Features \& Application

Features

- Low pressure drop
- Large contact area
- High separation and filtering efficiency
- High capacity
- Reduced liquid hold-up performance
- Corrosion and high temperature resistance

Application

Chemical

- Degasification
- Extraction
- Degasification, etc.

Oil \& Gas

- Dehydration
- Separation
- Absorption, etc.

Pharmaceutical

- Dehydration
- Extraction, etc.

Weave Impossible
 to Possible

