Standard Specification for Titanium and Titanium Alloy Wire ${ }^{1}$

Abstract

This standard is issued under the fixed designation B863; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This specification covers titanium and titanium alloy wire as follows:
1.1.1 Grade 1 -UNS R50250. Unalloyed titanium,
1.1.2 Grade 2-UNS R50400. Unalloyed titanium,
1.1.2.1 Grade $2 H-U N S$ R50400. Unalloyed titanium (Grade 2 with $58 \mathrm{ksi}(400 \mathrm{MPa})$ minimum UTS),
1.1.3 Grade 3-UNS R50550. Unalloyed titanium,
1.1.4 Grade 4-UNS R50700. Unalloyed titanium,
1.1.5 Grade 5-UNS R56400. Titanium alloy (6 \% aluminum, 4% vanadium),
1.1.6 Grade 6-UNS R54520. Titanium alloy (5 \% aluminum, $2.5 \% \mathrm{tin}$),
1.1.7 Grade 7-UNS R52400. Unalloyed titanium plus 0.12 to 0.25% palladium,
1.1.7.1 Grade $7 H —$ UNS R52400. Unalloyed titanium plus 0.12 to 0.25% palladium (Grade 7 with 58 ksi (400 MPa) minimum UTS),
1.1.8 Grade 9-UNS R56320. Titanium alloy (3 \% aluminum, 2.5% vanadium),
1.1.9 Grade 11—UNS R52250. Unalloyed titanium plus 0.12 to 0.25% palladium,
1.1.10 Grade 12—UNS R53400. Titanium alloy (0.3 \% molybdenum, 0.8 \% nickel),
1.1.11 Grade 13-UNS R53413. Titanium alloy (0.5 \% nickel, 0.05 \% ruthenium),
1.1.12 Grade 14-UNS R53414. Titanium alloy (0.5 \% nickel, 0.05% ruthenium),
1.1.13 Grade 15-UNS R53415. Titanium alloy (0.5 \% nickel, 0.05% ruthenium),
1.1.14 Grade 16—UNS R52402. Unalloyed titanium plus 0.04 to 0.08% palladium,
1.1.14.1 Grade 16H—UNS R52402. Unalloyed titanium plus 0.04 to 0.08% palladium (Grade 16 with 58 ksi (400 MPa) minimum UTS),
1.1.15 Grade 17-UNS R52252. Unalloyed titanium plus 0.04 to 0.08% palladium,

[^0]1.1.16 Grade 18—UNS R56322. Titanium alloy (3 \% aluminum, 2.5% vanadium) plus 0.04 to 0.08% palladium,
1.1.17 Grade 19—UNS R58640. Titanium alloy (3 \% aluminum, 8 \% vanadium, 6 \% chromium, 4 \% zirconium, 4 \% molybdenum),
1.1.18 Grade 20—UNS R58645. Titanium alloy (3 \% aluminum, 8% vanadium, 6% chromium, 4% zirconium, 4% molybdenum) plus 0.04 to 0.08% palladium,
1.1.19 Grade 21-UNS R58210. Titanium alloy (15% molybdenum, 3% aluminum, 2.7 \% niobium, 0.25% silicon),
1.1.20 Grade 23-UNS R56407. Titanium alloy (6 \% aluminum, 4% vanadium with extra low interstitial elements, ELI),
1.1.21 Grade 24-UNS R56405. Titanium alloy (6 \% aluminum, 4% vanadium) plus 0.04% to 0.08% palladium,
1.1.22 Grade 25-UNS R56403. Titanium alloy (6\% aluminum, 4% vanadium) plus 0.3 to 0.8% nickel and 0.04 to 0.08% palladium,
1.1.23 Grade 26-UNS R52404. Unalloyed titanium plus 0.08 to 0.14% ruthenium,
1.1.23.1 Grade $26 H$-UNS R52404. UNS RUnalloyed titanium plus 0.08 to 0.14 \% ruthenium (Grade 26 with 58 ksi (400 MPa) minimum UTS),
1.1.24 Grade 27-UNS R52254. Unalloyed titanium plus 0.08 to 0.14% ruthenium,
1.1.25 Grade 28—UNS R56323. Titanium alloy (3 \% aluminum, 2.5% vanadium) plus 0.08 to 0.14% ruthenium,
1.1.26 Grade 29—UNS R56404. Titanium alloy (6 \% aluminum, 4% vanadium with extra low interstitial elements, ELI) plus 0.08 to 0.14 \% ruthenium,
1.1.27 Grade 32-UNS R55111. Titanium alloy (5 \% aluminum, 1% tin, 1% vanadium, 1% zirconium, 0.8% molybdenum),
1.1.28 Grade 33-UNS R53442. Titanium alloy (0.4 \% nickel, 0.015% palladium, 0.025% ruthenium, 0.15% chromium),
1.1.29 Grade 34—UNS R53445. Titanium alloy (0.4 \% nickel, 0.015% palladium, 0.025% ruthenium, 0.15% chromium),
1.1.30 Grade 35-UNS R56340. Titanium alloy (4.5 \% aluminum, 2% molybdenum, 1.6% vanadium, 0.5% iron, 0.3 \% silicon),
1.1.31 Grade 36-UNS R58450. Titanium alloy (45 \% niobium),
1.1.32 Grade 37-UNS R52815. Titanium alloy (1.5 \% aluminum),
1.1.33 Grade 38-UNS R54250. Titanium alloy (4 \% aluminum, 2.5% vanadium, 1.5% iron), and
1.1.34 Grade 39—UNS R53390. Titanium alloy (0.25 \% iron, 0.4% silicon).

Note 1-H grade material is identical to the corresponding numeric grade (that is, Grade $2 \mathrm{H}=$ Grade 2) except for the higher guaranteed minimum UTS, and may always be certified as meeting the requirements of its corresponding numeric grade.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards: ${ }^{2}$

E8 Test Methods for Tension Testing of Metallic Materials [Metric] E0008_E0008M
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E539 Test Method for Analysis of Titanium Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry
E1409 Test Method for Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by Inert Gas Fusion
E1447 Test Method for Determination of Hydrogen in Titanium and Titanium Alloys by Inert Gas Fusion Thermal Conductivity/Infrared Detection Method
E1941 Test Method for Determination of Carbon in Refractory and Reactive Metals and Their Alloys by Combustion Analysis
E2371 Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic Emission Spectrometry (PerformanceBased Test Methodology)
E2994 Test Method for Analysis of Titanium and Titanium Alloys by Spark Atomic Emission Spectrometry and Glow Discharge Atomic Emission Spectrometry (PerformanceBased Method)
2.2 AWS Standard: ${ }^{3}$

AWS A5.16/A5.16M Specification for Titanium and Titanium Alloy Welding Electrodes and Rods

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

[^1]3.1.1 coils, n-wire in coil form with pitch and cast as described by purchaser.
3.1.2 straight lengths, n-wire in straight lengths, generally made by straightening wire from coils by the producer.
3.1.3 weld wire, n-round wire for welding.
3.1.4 wire, n-rounds, flats, or special shapes from 0.005 in. (0.127 mm) to 0.750 in . $(19.05 \mathrm{~mm}$) in thickness or major dimension.

4. Product Classification

4.1 Wire—See 3.1.4.
4.2 Coils-Coiled wire may be spooled on spools if required by the user.
4.3 Straight Lengths—After straightening, it may be necessary to perform cleaning or other finishing operations. Straight lengths are normally 10 to 12 ft long (random). Exact lengths may be specified by the purchaser when necessary.
4.4 Filler Metal or Weld Wire-Wire for welding filler metal application has special requirements for more restrictive chemistry that allows for oxygen increase inherent in most welding processes used for titanium, and has tighter limits on iron, carbon, nitrogen, and hydrogen. AWS ER Ti-XX grades are specifically designed for welding the corresponding ASTM XX wrought or cast material grades. In addition, special requirements for spooling, such as layer winding, cast, and helix, packaging to maintain cleanliness, and identification are necessary. Use AWS A5.16/A5.16M for wire for titanium and titanium alloy filler metal.

5. Ordering Information

5.1 Orders for material under this specification shall include the following information as applicable:
5.1.1 Grade number (Section 1),
5.1.2 Product description (Sections 3 and 4),
5.1.3 Chemistry (Table 1),
5.1.4 Mechanical properties (if applicable, Table 2),
5.1.5 Marking and packaging (Section 17),
5.1.6 Finish (Section 9),
5.1.7 Applicable dimensions including size, thickness, width, spool size, coil diameter, and length (exact, random, multiples) or print number,
5.1.8 Required reports (Section 16),
5.1.9 Special tests or requirements, and
5.1.10 Disposition of rejected material (Section 15).

6. Chemical Composition

6.1 The grades of titanium and titanium alloy metal covered by this specification shall conform to the requirements as to chemical composition prescribed in Table 1.
6.1.1 The elements listed in Table 1 are intentional alloy additions or elements which are inherent to the manufacture of titanium sponge, ingot or mill product.
6.1.1.1 Elements other than those listed in Table 1 are deemed to be capable of occurring in the grades listed in Table 1 by and only by way of unregulated or unanalyzed scrap additions to the ingot melt. Therefore, product analysis for
TABLE 1 Chemical Requirements

B863-19

Composition, Weight Percent ${ }^{\text {A,B,C,D,E }}$																				
Grade	UNS Number	$\underset{\max .}{C}$		$\begin{gathered} \mathrm{N} \\ \max . \end{gathered}$	H max.	Fe range or max.	Al	V	Pd	Ru	Ni	Mo	Cr	Co	Zr	Nb	Sn	Si	Other Elements max. each	Other Elements, max. total
32	R55111	0.08	0.11	0.03	0.015	0.25	$\begin{gathered} 4.5- \\ 5.5 \end{gathered}$	$0.6-$	--	--	--	$\begin{gathered} 0.6- \\ 1.2 \end{gathered}$	--	--	$\begin{gathered} 0.6- \\ 1.4 \end{gathered}$	--	$0.6-$	$\begin{gathered} 0.06- \\ 0.14 \end{gathered}$	0.1.	0.4
33	R53442	0.08	0.25	0.03	0.015	0.30	--	--	$\begin{aligned} & 0.01- \\ & 0.02 \end{aligned}$	$\begin{gathered} 0.02- \\ 0.04 \end{gathered}$	$\begin{gathered} 0.35- \\ 0.55 \end{gathered}$	--	$\begin{gathered} 0.1- \\ 0.2 \end{gathered}$	--	--	--	--	--	0.1	0.4
34	R53445	0.08	0.35	0.05	0.015	0.30	--	--	$\begin{gathered} 0.01- \\ 0.02 \end{gathered}$	$\begin{gathered} 0.02- \\ 0.04 \end{gathered}$	$\begin{gathered} 0.35- \\ 0.55 \end{gathered}$	--	$\begin{gathered} 0.1- \\ 0.2 \end{gathered}$	--	--	--	--	--	0.1	0.4
35	R56340	0.08	0.25	0.05	0.015	$\begin{aligned} & 0.20- \\ & 0.80 \end{aligned}$	$\begin{aligned} & 4.0- \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.1- \\ & 2.1 \end{aligned}$	--	--	--	$\begin{aligned} & 1.5- \\ & 2.5 \end{aligned}$	--	--	--	--	--	$\begin{aligned} & 0.20- \\ & 0.40 \end{aligned}$	0.1	0.4
36	R58450	0.04	0.16	0.03	0.015	0.03	--	--	--	--	--	--	--	--	--	$\begin{aligned} & 42.0- \\ & 47.0 \end{aligned}$	--	--	0.1	0.4
37	R52815	0.08	0.25	0.03	0.015	0.30	$\begin{aligned} & 1.0- \\ & 2.0 \end{aligned}$	--	--	--	--	--	--	--	--	- -	--	--	0.1	0.4
38	R54250	0.08	$\begin{aligned} & 0.20- \\ & 0.30 \end{aligned}$	0.03	0.015	1.2-1.8	$\begin{gathered} 3.5- \\ 4.5 \end{gathered}$	$\begin{aligned} & 2.0- \\ & 3.0 \end{aligned}$	--	--	--	--	--	--	--	--	--	--	0.1	0.4
39	R53390	0.08	0.15	0.03	0.015	$\begin{aligned} & 0.15- \\ & 0.40 \end{aligned}$	--	--	-	--	--	--	--	--	--	--	--	$\begin{aligned} & 0.30- \\ & 0.50 \end{aligned}$	0.1	0.4

${ }^{\text {A }}$ At minimum, the analysis of samples from the top and bottom of the ingot shall be completed and reported for all elements listed for the respective grade in this table.
${ }^{B}$ Final product hydrogen shall be reported. Ingot hydrogen need not be reported. Lower hydrogen may be obtained by negotiation with the manufacturer

[^2]TABLE 2 Tensile Requirements

Grade	Tensile Strength		Yield Strength (0.2 \% Offset)		$\frac{\text { Elongation }^{A}}{\mathrm{~min}, \%}$	$\frac{\text { Elongation }^{F}}{\mathrm{~min}, \%}$
	minimum		minimum			
	ksi	MPa	ksi	MPa		
1	35	(240)	20	(138)	20	24
2	50	(345)	40	(275)	18	20
$2 \mathrm{H}^{B, C}$	58	(400)	40	(275)	18	20
3	65	(450)	55	(380)	18	18
4	80	(550)	70	(483)	15	15
5	130	(895)	120	(828)	10	10
6	120	(828)	115	(793)	10	10
7	50	(345)	40	(275)	18	20
$7 \mathrm{H}^{B, C}$	58	(400)	40	(275)	18	20
9	90	(620)	70	(483)	15	15
11	35	(240)	20	(138)	20	24
12	70	(483)	50	(345)	18	18
13	40	(275)	25	(170)	18	24
14	50	(410)	40	(275)	20	20
15	70	(483)	50	(345)	15	18
16	50	(345)	40	(275)	20	20
$16 \mathrm{H}^{B, C}$	58	(400)	40	(275)	18	20
17	35	(240)	20	(138)	20	24
18	90	(620)	70	(483)	10	15
$19^{\text {D,E }}$	115	(793)	110	(759)	10	15
$20^{\text {D,E }}$	115	(793)	110	(759)	10	15
$21^{\text {D,E }}$	115	(793)	110	(759)	10	15
23	115	(793)	110	(759)	10	10
24	130	(895)	120	(828)	10	10
25	130	(895)	120	(828)	10	10
26	50	(345)	40	(275)	20	20
$26 \mathrm{H}^{B, C}$	58	(400)	40	(275)	18	20
27	35	(240)	20	(138)	24	24
28	90	(620)	70	(483)	15	15
29	120	(828)	110	(759)	10	10
32	100	(689)	85	(586)	10	10
33	50	(345)	40	(275)	20	20
34	65	(450)	55	(380)	18	18
35	130	(895)	120	(828)	5	5
36	65	(450)	60	(410)	10	10
37	50	(345)	31	(215)	18	20
38	130	(895)	115	(794)	10	10
39	75	(515)	60	(410)	20	

${ }^{\text {A }}$ Elongation shall be measured as described in 7.2.1 and 7.2.2.
${ }^{B}$ Material is identical to the corresponding numeric grade (that is, Grade $2 \mathrm{H}=$ Grade 2) except for the higher guaranteed minimum UTS, and may be dual certified with its corresponding numeric grade. Grade $2 \mathrm{H}, 7 \mathrm{H}, 16 \mathrm{H}$, and 26 H are intended primarily for pressure vessel use.
${ }^{c}$ The H grades were added in response to a user association request based on its study of over 5200 commercial Grade 2, 7, 16, and 26 test reports, where over 99 \% met the 58 ksi minimum UTS.
${ }^{D}$ Properties for material in the solution treated condition.
${ }^{E}$ Material is normally purchased in the solution treated condition. Therefore, properties for aged material shall be negotiated between manufacturer and purchaser.
F For sizes 0.250 in. diameter and larger.
elements not listed in Table 1 shall not be required unless specified and shall be considered to be in excess of the intent of this specification.
6.1.2 Elements intentionally added to the melt must be identified, analyzed and reported in the chemical analysis.
6.2 When agreed upon by the producer and purchaser and requested by the purchaser in his written purchase order, chemical analysis shall be completed for specific residual elements not listed in this specification.
6.3 Product Analysis-Product analysis tolerances do not broaden the specified heat analysis requirements, but cover variations between laboratories in the measurement of chemical content. The manufacturer shall not ship material which is outside the limits specified in Table 1 for the applicable grade. Product analysis limits shall be as specified in Table 3.

7. Mechanical Requirements

7.1 Annealed material supplied under this specification shall conform to the mechanical property requirements given in Table 2, as applicable. Material may be ordered in the cold worked condition to higher ultimate tensile strengths and lower elongation levels as agreed upon between the supplier and the purchaser.
7.2 Tension testing shall be performed in accordance with Test Methods E8. Tensile properties shall be determined using a strain rate of 0.003 to $0.007 \mathrm{in} . / \mathrm{in} . / \mathrm{min}$. (SI equivalent $\mathrm{mm} / \mathrm{mm} / \mathrm{min}$) through the yield strength, and then the crosshead speed shall be increased so as to produce fracture in approximately one additional minute.
7.2.1 Wire and shapes with the diameter or smallest dimension between 0.250 and 0.125 in . (6.4 to 3.2 mm) shall have the

TABLE 3 Permissible Variations in Product Analysis

Element	Product Analysis Limits, max or range, $\%$	Permissible Variation in Product Analysis
Aluminum	0.5 to 2.5	± 0.20
Aluminum	2.5 to 6.75	± 0.40
Carbon	0.10	+0.02
Chromium	0.1 to 0.2	± 0.02
Chromium	5.5 to 6.5	± 0.30
Hydrogen	0.02	+0.002
Iron	0.80	+0.15
Iron	1.2 to 1.8	± 0.20
Molybdenum	0.2 to 0.4	± 0.03
Molybdenum	0.6 to 1.2	± 0.15
Molybdenum	1.5 to 4.5	± 0.20
Molybdenum	14.0 to 16.0	± 0.50
Nickel	0.3 to 0.9	± 0.05
Niobium	2.2 to 3.2	± 0.15
Niobium	>30	± 0.50
Nitrogen	0.05	+0.02
Oxygen	0.30	+0.03
Oxygen	0.31 to 0.40	± 0.04
Palladium	0.01 to 0.02	± 0.002
Palladium	0.04 to 0.08	± 0.005
Palladium	0.12 to 0.25	± 0.02
Ruthenium	0.02 to 0.04	± 0.005
Ruthenium	0.04 to 0.06	± 0.005
Ruthenium	0.08 to 0.14	± 0.01
Silicon	0.06 to 0.50	± 0.02
Tin	0.6 to 3.0	± 0.15
Vanadium	0.6 to 4.5	± 0.15
Vanadium	7.5 to 8.5	± 0.40
Zirconium	0.6 to 1.4	± 0.15
Zirconium	3.5 to 4.5	± 0.20
Residuals	(each)	0.15

${ }^{A}$ A residual is an element in a metal or alloy in small quantities inherent to the manufacturing process but not added intentionally.
yield strength determined in accordance with Test Methods E8, and the elongation measured and reported over $4 D$ (4 diameters).
7.2.2 Wire and shapes with the diameter or smallest dimension less than $0.125 \mathrm{in} .(3.2 \mathrm{~mm})$ shall have the elongation determined over 2 in . (50.8 mm) unless defined otherwise by the purchaser. The reported value shall be expressed as a percentage elongation in 1 in . or equivalent.
7.3 The yield strength requirements in Table 2 only apply to sizes of 0.125 in . $(3.2 \mathrm{~mm})$ and above.

8. Dimensions, Weight, and Permissible Variations

8.1 Size-Tolerances on diameter of titanium and titanium alloy material covered by this specification shall be as specified in Table 4.

TABLE 4 Permissible Variations in Size for Titanium Wire

Specified Diameter, in. (dimension if shape wire)	Variation, in.	
	Wire as Coil or on Spools	Cut Straight Lengths ${ }^{A}$
0.010 to 0.045, incl	± 0.001	± 0.0015
over 0.045 to 0.062, incl	± 0.0015	± 0.002
over 0.062 to 0.090, incl	± 0.002	± 0.0025
over 0.090 to 0.187, incl	± 0.003	± 0.003
over 0.187 to 0.250	± 0.004	± 0.004
over 0.250 to 0.750	± 0.005	± 0.005

[^3]8.2 Weight-The shipping weight of any item of an ordered size in any finish condition may exceed the theoretical weight by as much as 10%.

9. Workmanship, Finish, and Appearance

9.1 Titanium and titanium alloy wire shall be free of injurious external and internal imperfections of a nature that will interfere with the purpose for which the wire is intended. Material may be furnished as polished, chemically cleaned, ground, or mechanically descaled, and shall have a clean, contamination-free surface.
9.1.1 For specific applications, a final sizing draw pass may be specified, with lubricants to be applied (or allowed to remain) on the wire.

10. Chemical Analysis

10.1 Samples for chemical analysis shall be representative of the material being tested. The utmost care must be used in sampling titanium for chemical analysis because of its great affinity for elements such as oxygen, nitrogen, and hydrogen. Therefore, in cutting samples for analysis, the operation should be carried out insofar as possible in a dust-free atmosphere. Chips should be collected from clean metal and tools should be clean and sharp. Hydrogen analysis shall be performed on the final cleaned wire product.

11. Methods of Chemical Analysis

11.1 The chemical analysis shall normally be conducted using the ASTM standard test methods referenced in 2.1. Other industry standard methods may be used where the ASTM test methods in 2.1 do not adequately cover the elements in the material or by agreement between the producer and purchaser.

12. Retests

12.1 If the results of a chemical or mechanical property test lot are not in conformance with the requirements of this specification, the lot may be retested at the option of the manufacturer. The frequency of the retest will double the initial number of tests. If the results of the retest conform to the specification, then the retest values will become the test values for certification. Only original conforming test results or the conforming retest results shall be reported to the purchaser. If the results for the retest fail to conform to the specification, the material will be rejected in accordance with Section 15.

13. Referee Test and Analysis

13.1 In the event of a disagreement between the manufacturer and the purchaser on the conformance of the material to the requirements of this specification, a mutually acceptable referee shall perform the tests in question using the ASTM standard test methods in 2.1. The referee's testing shall be used in determining conformance of the material to this specification.

14. Rounding-Off Procedure

14.1 For purposes of determining conformance with the specifications contained herein, an observed or a calculated value shall be rounded off to the nearest unit in the last
right-hand significant digit used in expressing the limiting value. This is in accordance with the round-off method of Practice E29.

15. Rejection

15.1 Material not conforming to this specification or to authorized modifications shall be subject to rejection. Unless otherwise specified, rejected material may be returned to the manufacturer at the manufacturer's expense, unless the purchaser receives, within three weeks of notice of rejection, other instructions for disposition.

16. Certification

16.1 The manufacturer shall supply at least one copy of the report certifying that the material supplied has been manufactured, inspected, sampled, and tested in accordance with the requirements of this specification and that the results of chemical analysis, tensile and other tests meet the require-
ments of this specification for the grade specified. The report shall include results of all chemical analysis, tensile tests, and all other tests required by the specification.

17. Packaging and Package Marking

17.1 Marking—Unless otherwise specified, individual packages of straight wires or coils of wire shall have attached an appropriate tag containing the purchase order number, the specification number, the alloy, the nominal size, and the manufacturer's lot number, or the product shall be boxed and the box marked with the same information.
17.2 Packaging-Unless otherwise specified, material purchased under this specification may be packaged for shipment by boxing or crating with adequate protection in accordance with the manufacturer's standard practice.

18. Keywords

18.1 titanium; titanium alloy; weld wire; wire

SUMMARY OF CHANGES

Committee B10 has identified the location of selected changes to this standard since the last issue (B863-14) that may impact the use of this standard. (Approved November 1, 2019.)
(1) Replaced discontinued E2626 with E2994. Removed E2626 from 11.1 because it has been discontinued.
(2) 3.1.4: Reduced the minimum listed size of wire to 0.005 in . (0.127 mm).
(3) Table 1: Replaced element names with chemical symbols for each listed element.
(4) Corrected footnote F in Table 2. in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http://www.copyright.com/

[^0]: ${ }^{1}$ This specification is under the jurisdiction of ASTM Committee B10 on Reactive and Refractory Metals and Alloys and is the direct responsibility of Subcommittee B10.01 on Titanium.

 Current edition approved Nov. 1, 2019. Published December 2019. Originally approved in 1995. Last previous edition approved in 2014 as B863-14. DOI: 10.1520/B0863-19.

[^1]: ${ }^{2}$ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on the ASTM website.
 ${ }^{3}$ Available from American Welding Society (AWS), 550 NW LeJeune Rd., Miami, FL 33126, http://www.aws.org.

[^2]: palladium, yttrium, copper, silicon, cobalt, tantalum, nickel, boron, manganese, and tungsten.
 ${ }_{E}$ The purchaser may, in the written purchase order, request analysis for specific elements no
 ${ }^{E}$ The purchaser may, in the written purchase order, request analysis for specific elements not listed in this specification

[^3]: ${ }^{A}$ Length tolerance for cut lengths is ± 0.25 in. for lengths up to and including 36 in.

